43 research outputs found

    A CMOS 0.18μm 64×64 single photon image sensor with in-pixel 11b time-to-digital converter

    Get PDF
    The design and characterization of a CMOS 64×64 single-photon avalanche-diode (SPAD) array with in-pixel 11b time-to-digital converter (TDC) is presented. It is targeted for time-resolved imaging, in particular 3D imaging. The achieved pixel pitch is 64μm with a fill factor of 3.5%. The chip was fabricated in a 0.18μm standard CMOS technology and implements a double functionality: Time-of-Flight estimation and photon counting. The imager features a programmable time resolution for the array of TDCs from 625ps down to 145ps. The measured accuracy of the minimum time bin is lower than ±1LSB DNL and 1.7LSB INL. The TDC jitter over the full dynamic range is less than 1LSB. Die-to-die process variation and temperature are discarded by auto-calibration. Fast quenching/restore circuit on each pixel lowers the power consumption by limiting the avalanche currents. Time gatedoperation is possible as well.Office of Naval Research (USA) N000141410355Ministerio de Economía y Competitividad TEC2012-38921- C02, IPT- 2011-1625-430000, IPC- 20111009 CDTIJunta de Andalucía TIC 2012- 233

    A CMOS 8×8 SPAD array for Time-of-Flight measurement and light-spot statistics

    Get PDF
    The design and simulation of a CMOS 8 × 8 single photon avalanche diode (SPAD) array is presented. The chip has been fabricated in a 0.18μm standard CMOS technology and implements a double functionality: measuring the Time-of-Flight with the help of a pulsed light source; or computing focal-plane statistics in biomedical imaging applications based on a concentrated light-spot. The incorporation of on-chip processing simplifies the interfacing of the array with the host system. The pixel pitch is 32μm, while the diameter of the quasi-circular active area of the SPADs is 12μm. The 113μm 2 active area is surrounded by a T-well guard ring. The resulting breakdown voltage is 10V with a maximum excess voltage of 1.8V. The pixel incorporates a novel active quenching/reset circuit. The array has been designed to operate with a laser pulsed at 20Mhz. The overall time resolution is 115ps. Focal-plane statistics are obtained in digital format. The maximum throughput of the digital output buffers is 200Mbps.Ministerio de Economía y Competitividad IPT-2011-1625- 430000, IPC-20111009Office of Naval Research (USA) N00014111031

    Low-Noise and High-Efficiency Near-IR SPADs in 110nm CIS Technology

    Get PDF
    Photon detection at longer wavelengths is much desired for LiDAR applications. Silicon photodiodes with deeper junctions and larger multiplication regions are in principle more sensitive to near-IR photons. This paper presents the complete electro-optical characterization of a P-well/ Deep N-well singlephoton avalanche diodes integrated in 110nm CMOS image sensor technology. The performance of time-of-flight image sensors is determined by the characteristics of the individual SPADs. In order to fully characterize this technology, devices with various sizes, shapes and guard ring widths have been fabricated and tested. The measured mean breakdown voltage is of 18V. The proposed structure has 0.4Hz/µm 2 dark count rate, 0.5% afterpulsing, 188ps FWHM (total) jitter and around 10% photon detection probability at 850nm wavelength. All figures have been measured at 3V excess voltage.Office of Naval Research (USA) N000141912156Junta de Andalucía P12-TIC 2338Ministerio de Economía y Competitividad RTI2018-097088-B-C3

    Photon Counting and Direct ToF Camera Prototype Based on CMOS SPADs

    Get PDF
    This paper presents a camera prototype for 2D/3D image capture in low illumination conditions based on single-photon avalanche-diode (SPAD) image sensor for direct time-offlight (d-ToF). The imager is a 64×64 array with in-pixel TDC for high frame rate acquisition. Circuit design techniques are combined to ensure successful 3D image capturing under low sensitivity conditions and high level of uncorrelated noise such as dark count and background illumination. Among them an innovative time gated front-end for the SPAD detector, a reverse start-stop scheme and real-time image reconstruction at Ikfps are incorporated by the imager. To the best of our knowledge, this is the first ToF camera based on a SPAD sensor fabricated and proved for 3D image reconstruction in a standard CMOS process without any opto-flavor or high voltage option. It has a depth resolution of 1cm at an illumination power from less than 6nW/mm 2 down to 0.1nW/mm 2 .Office of Naval Research (USA) N000141410355Ministerio de Economía y Competitividad TEC2015-66878-C3- 1-RJunta de Andalucía P12-TIC 233

    ToF Estimation Based on Compressed Real-Time Histogram Builder for SPAD Image Sensors

    Get PDF
    This paper presents a FPGA implementation of a novel depth map estimation algorithm for direct time-of-flight CMOS image sensors (dToF-CISs) based on single-photon avalanche-diodes (SPADs). Conventional ToF computation algorithms rely on complete ToF histograms. The next generation of high speed dToF-CIS is expected to have wide dynamic range and high depth resolution. Applications such as 3D imaging based on dToF-CISs require pixel-level ToF histograms which have to be stored by huge fully-random access memory (RAM) modules. The proposed shifted inter-frame histogram (SiFH) algorithm has the same accuracy but requires a memory footprint 128 times smaller than the conventional algorithm. Thus a much larger number of pixels can be resolved using limited block RAM resources of FPGAs. Moreover the overall frame rate is also remarkably improved compared to the scanning method. The proof of concept of the SiFH algorithm on 15 bits has been implemented on Spartan-3E. An automated testbench was developed to confirm that no ambiguity errors occur along the entire dynamic range.Office of Naval Research (USA) N00014-19-1-2156Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2338- 201

    Design of a compact and low-power TDC for an array of SiPM's in 110nm CIS technology

    Get PDF
    Silicon photomultipliers (SiPMs) are meant to substitute photomultiplier tubes in high-energy physics detectors and nuclear medicine. This is because of their -to name a few interesting properties- compactness, lower bias voltage, tolerance to magnetic fields and finer spatial resolution. SiPMs can also be built in CMOS technology. This allows the incorporation of active quenching and recharge schemes at cell level and processing circuitry at pixel level. One of the elements that can lead to finer temporal resolutions is the time-to-digital converter (TDC). In this paper we describe the architecture of a compact TDC to be included at each pixel of an array of SiPMs. It is compact and consumes low power. It is based on a voltage controlled oscillator that generates multiple internal phases that are interpolated to provide time resolution below the time delay of a single gate. Simulation results of a 11b TDC based on a 4-stage VCRO in 110nm CIS technology yield a time resolution of 80.0ps, a DNL of ±0.28 LSB, a INL ±0.52 LSB, and a power consumption of 850μW.Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2012-2338Office of Naval Research (USA) N00014141035

    Compact Real-Time Inter-Frame Histogram Builder for 15-Bits High-Speed ToF-Imagers Based on Single-Photon Detection

    Get PDF
    Time-of-flight (ToF) image sensors based on single-photon detection, i.e., SPADs, require some filtering of pixel readings. Accurate depth measurements are only possible if the jitter of the detector is mitigated. Moreover, the time stamp needs to be effectively separated from uncorrelated noise, such as dark counts and background illumination. A powerful tool for this is building a histogram of a number of pixel readings. Future generation of ToF imagers are seeking to increase spatial and temporal resolution along with the dynamic range and frame rate. Under these circumstances, storing the complete histogram for every pixel becomes practically impossible. Considering that most of the information contained by the histogram represents noise, we propose a highly efficient method to store just the relevant data required for the ToF computation. This method makes use of the shifted inter-frame histogram. It requires a memory as low as 128 times smaller than storing the complete histogram if the pixel values are coded on up to 15 bits. Moreover, a fixed 2 8 words memory is enough to process histograms containing up to 2 15 bins. In exchange, the overall frame rate only decreases to one half. The hardware implementation of this algorithm is presented. Its remarkable robustness for a low SNR of the ToF estimation is demonstrated by Matlab simulations and FPGA implementation using input data from a SPAD camera prototype.Office of Naval Research (USA) N000141410355Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2338-2013European Union H2020 76586

    An Experimentally-Validated Verilog-A SPAD Model Extracted from TCAD Simulation

    Get PDF
    Single-photon avalanche diodes (SPAD) are photodetectors with exceptional characteristics. This paper proposes a new approach to model them in Verilog-A HDL with the help of a powerful tool: TCAD simulation. Besides, to the best of our knowledge, this is first model to incorporate a trap-assisted tunneling mechanism, a cross-section temperature dependence of the traps, and the self-heating effect. Comparison with experimental data establishes the validity of the model.Junta de Andalucía TIC 2012-2338Ministerio de Economía y Competitividad TEC2015-66878-C3-1-ROffice of Naval Research (USA) N00014141035

    A CMOS Imager for Time-of-Flight and Photon Counting Based on Single Photon Avalanche Diodes and In-Pixel Time-to-Digital Converters

    Get PDF
    The design of a CMOS image sensor based on single-photon avalanche-diode (SPAD) array with in-pixel time-to-digital converter (TDC) is presented. The architecture of the imager is thoroughly described with emphasis on the characterization of the TDCs array. It is targeted for 3D image reconstruction. Several techniques as fast quenching/recharge circuit with tunable dead-time and time gated-operation are applied to reduce the noise and the power consumption. The chip was fabricated in a 0.18 m standard CMOS process and implements a double functionality: time-of-flight (ToF) estimation and photon counting. The imager features a programmable time resolution of the array of TDCs down to 145 ps. The measured accuracy of the minimum time bin is lower than 1LSB DNL and 1.7 LSB INL. The TDC jitter over the full dynamic range is less than 1 LSB.Peer reviewe

    Wide range 8ps incremental resolution time interval generator based on FPGA technology

    Get PDF
    Accurate generation of picosecond-resolution wide-range time intervals has become a necessity for the characterization of time-to-digital converters involved in time resolved imaging. This paper presents the design and measurement of a time interval generator based on FPGA technology. Although it can be employed in different automatic test setups, it has been designed to characterize an array of time-to-digital converters. It can work as periodic pulse/ frequency generator but also as a digital-to-time converter. The accuracy of periodic pulse generator is around 20ps RMS jitter over a time range of 600ps to 33ns. The incremental time resolution is 8ps and the repetition rate is up to 2MHz. The accuracy of the digital-to-time converter is less than 0.8LSB DNL and 2LSB INL, whilst the time resolution is 27ps. Full characterization of the module is reported including a comparison with state-of-the-art instruments in this field.Office of Naval Research (USA) N000141410355Ministerio de Economía y Competitividad TEC2012-38921- C02, IPT −2011-1625-430000, IPC- 20111009 CDTIJunta de Andalucía TIC 2012–233
    corecore